The Keller-Segel system with logistic growth and signal-dependent motility

نویسندگان

چکیده

The paper is concerned with the following chemotaxis system nonlinear motility functions style='text-indent:20px;'> \begin{document}$\begin{equation}\label{0-1}\begin{cases}u_t = \nabla \cdot (\gamma(v)\nabla u- u\chi(v)\nabla v)+\mu u(1-u), &x\in \Omega, ~~t>0, \\ 0 \Delta v+ u-v, & x\in \\u(x, 0) u_0(x), \end{cases}~~~~(\ast)\end{equation}$ \end{document} style='text-indent:20px;'>subject to homogeneous Neumann boundary conditions in a bounded domain \begin{document}$ \Omega\subset \mathbb{R}^2 $\end{document} smooth boundary, where id="M2">\begin{document}$ \gamma(v) and id="M3">\begin{document}$ \chi(v) satisfy style='text-indent:20px;'>? id="M4">\begin{document}$ (\gamma, \chi)\in [C^2[0, \infty)]^2 id="M5">\begin{document}$ \gamma(v)>0 id="M6">\begin{document}$ \frac{|\chi(v)|^2}{\gamma(v)} for all id="M7">\begin{document}$ v\geq $\end{document}. style='text-indent:20px;'>By employing method of energy estimates, we establish existence globally solutions ($\ast$) id="M8">\begin{document}$ \mu>0 any id="M9">\begin{document}$ u_0 \in W^{1, \infty}(\Omega) id="M10">\begin{document}$ \geq (\not\equiv) Then based on Lyapunov function, show that id="M11">\begin{document}$ (u, v) will exponentially converge unique constant steady state id="M12">\begin{document}$ (1, 1) provided id="M13">\begin{document}$ \mu>\frac{K_0}{16} id="M14">\begin{document}$ K_0 \max\limits_{0\leq v \leq \infty}\frac{|\chi(v)|^2}{\gamma(v)}

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth

In this paper, we investigate the pattern formation in Keller–Segel chemotaxis over multi– dimensional bounded domains subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate χ increases. Then, using Crandall–Rabinowitz local theory with χ being the bifurcation parameter, we obtain the existence of no...

متن کامل

Traveling bands for the Keller-Segel model with population growth.

This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that ...

متن کامل

The Keller-Segel model with small diffusivity

We study the classical model for chemotaxis, the so-called Keller-Segel model, which is a drift-diffusion equation for the cell density coupled with an elliptic equation describing the evolution of the chemoattractant. We investigate the case of small cell diffusivity and, in particular, the hyperbolic limit of the system as the diffusion coefficient goes to zero. Considering a model where the ...

متن کامل

The Keller-Segel Model with Logistic Sensitivity Function and Small Diffusivity

Abstract. The Keller-Segel model is the classical model for chemotaxis of cell populations. It consists of a drift-diffusion equation for the cell density coupled to an equation for the chemoattractant. Here a variant of this model is studied in one-dimensional position space, where the chemotactic drift is turned off for a limiting cell density by a logistic term and where the chemoattractant ...

متن کامل

The fractional Keller-Segel model

The Keller-Segel model is a system of partial differential equations modelling chemotactic aggregation in cellular systems. This model has blowing up solutions for large enough initial conditions in dimensions d ≥ 2, but all the solutions are regular in one dimension; a mathematical fact that crucially affects the patterns that can form in the biological system. One of the strongest assumptions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B

سال: 2021

ISSN: ['1531-3492', '1553-524X']

DOI: https://doi.org/10.3934/dcdsb.2020218